Nielsen Coincidence Theory in Arbitrary Codimensions

نویسندگان

  • Ulrich Koschorke
  • ULRICH KOSCHORKE
چکیده

Given two maps f1, f2 : M −→ N between manifolds of the indicated arbitrary dimensions, when can they be deformed away from one another? More generally: what is the minimum number MCC(f1, f2) of pathcomponents of the coincidence space of maps f ′ 1 , f ′ 2 where f ′ i is homotopic to fi, i = 1, 2 ? Approaching this question via normal bordism theory we define a lower bound N(f1, f2) which generalizes the Nielsen number studied in classical fixed point and coincidence theory (where m = n). In at least three settings N(f1, f2) turns out to coincide with MCC(f1, f2): (i) when m < 2n− 2; (ii) when N is the unit circle; and (iii) when M and N are spheres and a certain injectivity condition involving JamesHopf invariants is satisfied. We also exhibit situations where N(f1, f2) vanishes, but MCC(f1, f2) is strictly positive.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methods in Nielsen Coincidence Theory

In classical fixed point and coincidence theory the notion of Nielsen numbers has proved to be extremely fruitful. Here we extend it to pairs (f1, f2) of maps between manifolds of arbitrary dimensions. This leads to estimates of the minimum numbers MCC(f1, f2) (and MC(f1, f2), resp.) of pathcomponents (and of points, resp.) in the coincidence sets of those pairs of maps which are homotopic to (...

متن کامل

Nonstabilized Nielsen coincidence invariants and Hopf--Ganea homomorphisms

In classical fixed point and coincidence theory the notion of Nielsen numbers has proved to be extremely fruitful. We extend it to pairs (f1, f2) of maps between manifolds of arbitrary dimensions, using nonstabilized normal bordism theory as our main tool. This leads to estimates of the minimum numbers MCC(f1, f2) (and MC(f1, f2), resp.) of pathcomponents (and of points, resp.) in the coinciden...

متن کامل

Geometric and Homotopy Theoretic Methods Innielsen Coincidence Theory

In classical fixed point and coincidence theory, the notion of Nielsen numbers has proved to be extremely fruitful. Here we extend it to pairs ( f1, f2) of maps between manifolds of arbitrary dimensions. This leads to estimates of the minimum numbers MCC( f1, f2) (and MC( f1, f2), resp.) of path components (and of points, resp.) in the coincidence sets of those pairs of maps which are ( f1, f2)...

متن کامل

Remnant properties in Nielsen coincidence theory

We give an extension to coincidence theory of some key ideas from Nielsen fixed point theory involving remnant properties of free group homomorphisms. In particular we extend Wagner’s theorem for computing Reidemeister classes for Wagner characteristic homomorphisms, which allows us to compute doubly twisted conjugacy classes in many cases. We also extend Kim’s method for homomorphisms with bou...

متن کامل

Higher-order Nielsen Numbers

Suppose X , Y are manifolds, f ,g : X → Y are maps. The well-known coincidence problem studies the coincidence set C = {x : f (x) = g(x)}. The number m= dimX −dimY is called the codimension of the problem. More general is the preimage problem. For a map f : X → Z and a submanifold Y of Z, it studies the preimage set C = {x : f (x) ∈ Y}, and the codimension is m = dimX + dimY − dimZ. In case of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008